
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 1

A Rainbow Coverage Path Planning for a Patrolling
Mobile Robot With Circular Sensing Range

Vatana An, Member, IEEE, Zhihua Qu, Fellow, IEEE, and Rodney Roberts, Senior Member, IEEE

Abstract—In this paper, we proposed a coverage path (CP)
planning approach for a mobile robot moving in a dynami-
cally changing environment. Our family of algorithms begins
by finding the first path around the center of interior obsta-
cles/disks of a given target region (TR) through the Graham
scan algorithm. The first path is then used as a foundational
path to generate a collision free, first order differentiable, and
observable CP through a complete set of input and output
transformation algorithms which together form the rainbow CP
planning approach. The last algorithm of the rainbow CP plan-
ning approach finds a sufficient number of observation points
on the CP needed to observe the TR. The novelty of our rain-
bow CP planning approach is that it partitions the TR into
different shapes with different properties needed to obtain com-
plete coverage while achieving first order path differentiability.
The main technical contributions of the proposed approach is to
provide a holistic solution that segments any TR, uses triangula-
tion to determine the line of sights and observation points, and
computes the collision-free CP within a quadratic runtime. The
proposed method can be readily generalized to address problems
of higher dimensions, and it is scalable with respect to the size
of TR and the number of robots. Computer simulations are used
to illustrate the effectiveness and correctness of the proposed
approach.

Index Terms—Convex hull, dynamic, external tangent, half-
plane, nonholonomic, triangulation, visible polygon (VP).

I. INTRODUCTION

COVERAGE path (CP) planning for mobile robot to find
a motion path for the robot to pass over all points in

a given region has recently become an increasingly popular
research topic. CP determines power usage that arises from
massive information received from sensory devices, distance

Manuscript received October 25, 2016; accepted January 21, 2017. This
work was supported by the U.S. Navy’s Internal Laboratory Independent
Research Grant. The work of Z. Qu was supported in part by the
U.S. National Science Foundation under grant ECCS-1308928, in part by
the U.S. Department of Energy under Award DE-EE0006340 and Award
DE-EE0007327, in part by the U.S. Department of Transportation under
Grant DTRT13-G-UTC51, in part by L-3 Communication under Contract
11013I2034, in part by Leidos under Contract P010161530, and in part by
the Texas Instruments Awards. This paper was recommended by Associate
Editor Z. Liu.

V. An is with the U.S. Navy, Panama City, FL 32407 USA, and also
with the University of Central Florida, Orlando, FL 32816 USA (e-mail:
vatana.an@navy.mil).

Z. Qu is with the Department of Electrical and Computer Engineering,
University of Central Florida, Orlando, FL 32816 USA (e-mail: qu@ucf.edu).

R. Roberts is with the Department of Electrical and Computer Engineering,
Florida A&M—Florida State University College of Engineering, Tallahassee,
FL 32310-6046 USA (e-mail: rroberts@eng.fsu.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMC.2017.2662623

TABLE I
COMMON ABBREVIATION (ABB.)

to travel and time to completion, and number of turns for
the robot to cover the interested region [1]–[14]. The type of
coverage such as approximate coverage or complete coverage
is an important factor in CP planning.

Choset [4] defined four different types of coverage:
1) heuristic; 2) approximate; 3) partial-approximate; and
4) exact decomposition. Any type of cellular decomposition
divides the interest region into “simple” cells. In any CP
planning algorithm, complexity is usually measured with two
different parameters. They are distance traveled by the robot
and memory required to store input information. Table I lists

2168-2216 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:vatana.an@navy.mil
mailto:qu@ucf.edu
mailto:rroberts@eng.fsu.edu
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

common acronyms that will be used throughout this paper.
These acronyms will be defined at first usage.

Kinematic and boundary constraints are also major prob-
lems that have puzzled many researchers for decades. Efficient
mobile coverage requires the path to be smooth or differ-
entiable while avoiding obstacles. An important question to
answer is how a coupled issue such as path differentiabil-
ity and a complete coverage is obtained? In the span of one
decade, [1], [2], [5], [6], and [12] achieved some degrees of
success with CP planning. However, some fundamental issues
need to be addressed. An and Qu [1] proposed a CP planning
with triangulation technique which guarantees complete cover-
age, but as the sensing range approaches infinity, the final CP
obtained is formed by many ripples. An and Qu [2] proposed
a CP planning algorithm that improves the result of [1]
while maintaining complete coverage; however, as the sens-
ing range approaches infinity, saturation occurs. Oh et al. [6]
proposed a triangular-cell-based map CP planning; however,
the resulting CP is discontinuous. Yazici et al. [12] proposed
a generalized Voronoi diagram-based CP planning; how-
ever, the resulting CP is also discontinuous. Lee et al. [5]
attempted to smooth the path with a high-resolution grid
map representation and coarse to fine constrained inverse dis-
tance transform techniques; however, discontinuity in the CP
still exists.

Based on the issues discussed above, the problem state-
ment is to design a differentiable CP that is as short as
possible as well as obtaining complete coverage when suffi-
cient sensing range is available. Our new result, unlike that
in [5], [6], [12], and [14], provides a smooth CP. Because
motion control points can be selected to be on the smooth CP,
smooth speed adjustment, and smooth steering is also pos-
sible due to the result of [15]. Unlike our previous results
in [1] and [2] which compute all observer points or observers
first and then the differentiable path second, the result of
this technique is the opposite. The reason for inefficient CP
in [1] and [2] are due to the locality consideration. What this
mean is that only a few disks in the set are considered when
observers are found which implies that only a few disks in the
set are considered when CP is designed. This is different from
global consideration where all disks in the set are considered
in implementing the CP which is implemented in this paper.
Our new contribution is the rainbow CP planning approach
which requires seven phases to obtain a smooth and differ-
entiable CP with sufficient observers needed to observe the
target region (TR). The rainbow CP planning algorithm will
be referred to as the rainbow algorithm for brevity. Most of
the algorithms in this paper are our new contributions. Some
existing algorithms that we incorporated will be mentioned
wherever they are introduced. Finally, the overall organization
of this paper is as follows. Section I-A describes some exam-
ples of exact decomposition. Sections I-B and I-C describe the
main tools to implement a piecewise continuous control law
and collision avoidance with dynamic obstacles. In Section II,
we formulate our problem and define the necessary assump-
tions. In Section III, we discuss existing and newly developed
algorithms. We propose the rainbow algorithm, in Section IV.
We verify and validate our techniques in Section V and then
provide our conclusion in Section VI.

A. Exact Decomposition

An exact cellular decomposition technique results in the
set of nonintersecting regions and their union is the region
of interest [4]. Examples of exact cellular decomposition
include trapezoidal, boustrophedon [3], triangular, and rect-
angular decomposition. Our CP planning approach for a robot
uses a triangular decomposition approach. CP planning for
multiple robots takes the coverage control into consideration.
A triangular decomposition is preferred because of its simplic-
ity and because theories and algorithms are available to solve
it such as Delaunay triangulation (DT) [16] and the art gallery
theorem [17].

B. Canonical Control

Canonical chained form allows a nonholonomic system
in the world coordinate to be transformed into a control-
lable form. The controllable inputs are piecewise continuous
which naturally fit the main result of this paper. Chained form
examples can be found in [15] and [18].

C. Obstacle Avoidance and Trajectory Generation

Recent advances in trajectory generation allow for a real-
time path planning for a whole class of nonholonomic system.
Qu et al. [15] formulated and proved an input parameteriza-
tion approach which is analytical and completely controls an
autonomous system in a piecewise continuous manner. The
result is practical because the robot can be analytically con-
trolled to move from an initial position to a final position
within the time, kinematic, and geometrical constraints. The
result of [15] is improved in [18] with regard to near-optimal
path length and control energy.

II. PROBLEM FORMULATION

This section defines some assumptions and definitions
required to solve the problem introduced in Section I.

Assumption 1: The robot being studied is a two-wheeled
robot, enveloped by a 2-D obstacle, with the center at O(t) =
(x, y) and of radius Rr. Its motion obeys a nonholonomic
constraint with velocity vector expressed as vr(t). The posi-
tion and velocity are a function of time because the robot is
continuously moving.

Assumption 2: The radius or range of the robot’s motion
sensor is Rs. Rs is greater than Rr and has sufficient length to
observe TR(s) from an observation point.

Assumption 3: Both type of objects, static and dynamic, are
denoted by the symbol Oi(t), where the subscript i = 1, . . . , N
represents the obstacle number. For example, an ith object with
radius Ri will be represented by obstacle centered at point
Oi(t). For moving objects, the origin Oi(t) is time varying
and moves with piecewise linear velocity.

Assumption 4: The set � to be covered is two-dimensionally
connected, with respect to a disk of the robot’s radius, Rr. For
example, consider the TR in Fig. 1, where disks 1–4, 7, 13,
14, and 16–18 are exterior while disks 5, 6, 8–12, and 15 are
interior. It is assumed that moving obstacles are moving within
the TR.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

AN et al.: RAINBOW CP PLANNING FOR PATROLLING MOBILE ROBOT WITH CIRCULAR SENSING RANGE 3

Fig. 1. Sample TR.

A. Patrolling Control Problem

The problem is to design a differentiable and continuous
path for a nonholonomic mobile sensing robot with range,
coverage, movement, and time constraints to sweep the given
area without collision. Given an initial position and orienta-
tion of the robot represented by Pi and θi and the environment
under Assumptions 1–4, we find a piecewise, continuous steer-
ing control under which the robot moves collision-free, and
covers all points in the set � overtime. Mathematically, the
problem is to determine a differentiable path s(t) by ensuring
conditions represented by (1) and (2) hold

mint∈[t0,t0+T]‖q − s(t)‖φ(q, t) ≤ Rr, ∀q ∈ � (1)

‖s(t) − Oi(t)‖t∈[t0,t0+T] ≥ Rr + Ri, ∀i ∈ {1, . . . , n} (2)

where q is the search space, φ(q, t) is a weighing function
according to constraints and other design requirements, and
T is the time for the robot to complete its search mission.
t0 is an initial time. Equation (1) is a standard mathematical
expression for CP planning, and inequality (2) is a mathe-
matical representation of no collision. It is shown in [19] that
the choices of φ(q, t) may produce s(t) that passes through
a given point q once or several times and at certain desir-
able time. The patrolling control problem is solved using the
proposed rainbow CP planning approach which consists of the
sets of algorithms tabulated in Tables II and III.

The rainbow algorithm requires a number of seed algorithms
which includes some existing algorithms and newly developed
algorithms. All 13 algorithms will be explained in the subse-
quent sections. The existing guidance and control algorithm
from [15] is also included in Section V-A for completeness.

III. COVERAGE STRATEGIES

In this section, we discuss auxiliary algorithms presented
in Table III. These algorithms use the following six known
results.

1) Minimum Enveloping Rectangle Algorithm: Minimum
enveloping rectangle (MER) algorithm takes a finite
number of vertices as input and outputs the vertices
with extreme coordinates (xmin, ymin), (xmin, ymax),
(xmax, ymin), and (xmax, ymax) [20]. With an example
convex polygon shown in Fig. 2(a) and (d), MER algo-
rithm returns four extreme vertices that form a simple
MER as shown in Fig. 2(b) and (e), respectively, in
dashed. From a MER, a finite length line segment (LS),
vertical and horizontal, with sufficient length can be

TABLE II
SEVEN PHASES OF THE RAINBOW ALGORITHM

AND THEIR DESCRIPTIONS

TABLE III
AUXILIARY ALGORITHMS USED BY THE RAINBOW ALGORITHM

Fig. 2. Sample MER and relative CS test. The CSs in (a)–(c) are AD, DC,
BC, and AB. The CSs in (d)–(f) are EG, EF, HF, and HG. (a) Typical closed
path. (b) and (e) MER. (c) and (f) Relative LS test. (d) Closed path.

found to test relative CSs that form a closed path as
shown in Fig. 2(c) and (f). The closed path in Fig. 2 con-
sists of four connected CSs and their endpoints are
known as vertices.

2) Common External Tangent and Common Internal
Tangent Algorithm: Common external tangent (CET)
and common internal tangent (CIT) algorithm finds an
LS that is tangent to two coplanar circles that does not
intersect or does intersect the segment joining the centers

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Fig. 3. Examples illustrating CIT and CET. (a) L(A, B) is a CIT. (b) L(C, D)

is a CET.

Fig. 4. Example of an RT, a VP, and a CS crossing both. (a) RT 6. (b) VP 6.
(c) RT 6 and VP 6. (d) CS(B, C).

of the two circles, respectively [21]. Fig. 3 illustrates
a CIT/CET with AB and CD, respectively.

3) Visible Polygon Algorithm: Visible polygon (VP) algo-
rithm takes a regular triangulation (RT) as input and
outputs its VP [1]. The shape and size of a VP is a func-
tion of the RT. An and Qu [1] guaranteed that if an
observer of sufficient range is placed inside of an RT’s
VP, then the entire RT is observable. The circular way-
point coverage placement (CWCP) algorithm places an
observer at the centroid of a VP to observe an RT.
An and Qu [1] showed that a VP is always a convex
polygon. The centroid of a convex polygon can be com-
puted by the following equations, where A represents
an area of the convex polygon, xi and yi represent ver-
tices of the convex polygon, and Cx and Cy represent
coordinates of the centroid [22]:

A = 1

2

n−1∑

i=0

(xiyi+1 − xi+1yi)

Cx = 1

6A

n−1∑

i=0

(xi + xi+1)(xiyi+1 − xi+1yi)

Cy = 1

6A

n−1∑

i=0

(yi + yi+1)(xiyi+1 − xi+1yi).

In the above equations, n represents the number of
vertices of the VP which has a maximum of nine
vertices [1]. Fig. 4(a) shows one of the RTs of the TR,
RT 6. Fig. 4(b) shows VP of RT 6. Fig. 4(c) shows the
VP overlay on its RT. Fig. 4(d) shows an RT with its
VP being crossed by a CS, BC. Any sufficient-range
observer on BC can observe RT 6. Equivalently, BC is
the VCS of RT 6.

4) Graham Scan Algorithm: Graham scan algorithm finds
convex hull of a finite set of points [23]. The convex
hull of a set of N points in the Euclidean plane is the
smallest convex set that contains all points in the set.
Graham scan algorithm is implemented in the RedPath
algorithm. Graham scan algorithm is generalizable to
higher dimension.

5) DT Algorithm: DT algorithm partitions the TR into
several RTs [16]. It is an exact partition technique

TABLE IV
RELATIVE CURVE SEGMENT TEST (BURL) ALGORITHM

implemented in the GreenPath algorithm. An RT is sim-
ilar to a triangle with three edges and three vertices,
except that the three vertices in a triangle are replaced
by three circles of varying radii.

6) Line Intersection Algorithm: Line intersection algo-
rithm computes the intersection between two or more
CSs [24]. Line intersection algorithm is implemented in
the VioletPath algorithm to find observers for the TR.

Based on the aforementioned algorithms, the auxiliary algo-
rithms, defined and explained below are used to facilitate the
implementation and integration of the rainbow algorithms.

A. Auxiliary Algorithm 1 (BURL Algorithm)

The bottom, upper, right, and left (BURL) algorithm is
developed to determine the closed path’s CS status. It consists
of four steps to form a relative CS test algorithm as shown in
Table IV. To handle all cases of CSs in a closed path, both
vertical line test (VLT) and horizontal line test (HLT) must
be considered. For example in Fig. 2(c), the VLT tests AD’s
midpoint for two intersection points, LT and LO. Likewise, the
HLT tests AB’s midpoint for two intersection points, LT and
LO. If the CS under test is a bottom/upper CS, then LT is
expected to be below/above LO. Since AD is an upper CS, LT
is above LO. If the CS under test is a left/right CS, then LT
is expected to be left/right of LO. Fig. 2(f) illustrates the case
of VLT on GE in which the status of GE cannot be deter-
mined. All CSs are considered in clockwise (CW) direction in
this paper. VLT in Fig. 2(f) intersects GE at LT and infinitely
many other points (no unique solution), and LO cannot be
determined. However, HLT determines that GE is a “left” CS.
GE has undefined slope because it is a vertical line (VL).

B. Auxiliary Algorithm 2 (CSIRT Algorithm)

A curve segment intersecting RT (CSIRT) algorithm is
developed to observe an RT from an arbitrary CS that crosses
the RT, but does not cross the RT’s VP. Fig. 5(b) illustrates the
RT and CS pair that require CSIRT algorithm for observabil-
ity. The VP in Fig. 5(a) is highlighted in the black circle on
the longest edge of the RT. It is really tiny and it is enlarged in
Fig. 6(b) as the convex region bounded by two green LSs and
a blue LS. Every RT has six extreme points (EPs). A CSIRT
algorithm partitions the RT along the visible disk (VD), the
disk that has both visibility LSs (VLSs) intersect with the CS
within an RT.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

AN et al.: RAINBOW CP PLANNING FOR PATROLLING MOBILE ROBOT WITH CIRCULAR SENSING RANGE 5

Fig. 5. RT 16, its VP, and an intersecting CS in RT. VP of RT 16 is enlarged
in Fig. 6(b) which is also defined as A4. (a) RT 16 and its tiny VP. (b) RT,
VP, and CS(P1, P2).

Fig. 6. RT through CSIRT algorithm. Disk 11 has two VLSs intersecting with
the yellow CS. CSIRT only requires the yellow CS that is in an RT. Yellow CS
is a CS of yellow path to be discussed later. Note that VLS is perpendicular
to the RT’s boundary LS that the EP is originated. (a) CSIRT partition of an
RT. (b) Snapshot of A4.

The algorithm begins by computing the VLSs of the RT. Of
the three disks within the RT, only disk 11 has both VLSs
intersect the curve segment of the CP as shown in Fig. 6(a).
Lemma 1 guaranteed that if an RT can be partitioned by the
CSIRT algorithm, then there exist three observers on the CS
to observe an RT. The number of observers produced by the
CSIRT algorithm is reduced to 2 by Theorem 1.

The CSIRT algorithm partitions the RT with a total
area A into four mutually disjoint subregions (SRs),
A1, A2, A3, and A4, where the total area A = ∪4

l=1Al and
|A| = ∑4

l=1 |Al|. The seven-step CSIRT algorithm is illustrated
in Table V. A CSIRT algorithm partitions an RT into SRs and
then finds observers on the CS to observe each SR. Lemma 1 is
developed to guarantee that if an RT and the CS that cross the
RT are partitionable pairs, then the RT can be observed by
three observers. To formulate Lemma 1, let us define some
definitions.

A slicing point is an auxiliary point on the VD
[see Fig. 7(a)] that serves as a marker point of a SR in region
A2 [see Fig. 6(a)]. A slicing point I1 is located between an
observer O1 and the center point of the VD. Likewise a slic-
ing point I2 is located between an observer O2 and the center
of the VD. A slicing LS is an auxiliary line of sight segment
within the RT that serves to designate a SR of region A2. There
are two variants of slicing LSs. The first variant is the center
slicing LS. A center slicing LS passes through an observer,
a slicing point, and ends at the center of the VD. A center
slicing LS l1 has collinear points O1, I1, and the center point
of the VD. Likewise a center slicing LS l2 has collinear points
O2, I2, and the center point of the VD. The second variant is
the secant slicing LS. A secant slicing LS l3 passes through an
observer O3 and I1. A secant slicing LS l4 passes through an
observer O3 and I2. Now we are ready to present Lemma 1.

TABLE V
CSIRT ALGORITHM

Fig. 7. Illustration of (a) Lemma 1 and (b) Theorem 1. Condition 1 returns
observers O1, O2, and O3. Condition 3 is shown with slicing points I1 and
I2 connected to O1 and O2, respectively, and points I1 and I2 are connected
to point O3.

Lemma 1: The CSIRT algorithm provides a set of observers,
O1, O2, and O3, on a CS that crosses an RT, but does not
cross its VP, that jointly observe the whole RT if all of the
following conditions hold.

1) The CSIRT algorithm returns true with an RT and the
CS pair as inputs.

2) O1 is in the VP of A1. Likewise O2 is in the VP of A3.
3) O1, O2, and O3 have the following properties.

a) A center slicing O1I1 intersects with a secant
slicing O3I1 at I1.

b) A center slicing O2I2 intersects with a secant
slicing O3I2 at I2.

Proof: Condition 1 of the lemma guarantees that the com-
bination of the input CS and an RT pair, partitions an RT into
SRs with all three observers and all four SRs with properties
needed for visibility analysis. Condition 2 of the lemma guar-
antees that O1 has full coverage of A1, and O2 has full
coverage of A3. Condition 3 guarantees that O1, O2, and O3
can jointly observe A2. A4, if greater than zero, is always seen
by either O1, O2, or O3 because it is not blocked. �

Theorem 1 allows the number of observers to be reduced to
2 if a common point on the VD can be observed by the first
two observers. Fig. 7(b) illustrates how Theorem 1 is applied.

Theorem 1: An RT that can be partitioned by the CSIRT
algorithm and is visible by a set of observers can be reduced
to just two observers if observers O1 and O2 can both observe
a common point on the VD.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Fig. 8. VCPM algorithm for a VP to be crossed by the CP. (a) Scenario for
CET. (b) Comparing distance. (c) VC and new CS.

Fig. 9. RT A, with and without disks, to be observed from a CP P(A). (a) RT
forms by disks i, j, and k. (b) Diskless region A is visible from every point
on P(A).

Proof: O1 can observe A1 because it is in the VP of A1.
Likewise, O2 can observe A3. The fact that O1 and O2 can
both observe a common point on the VD means that together
they can observe A2. Since A4 is not blocked, either O1 or O2
can observe A4. �

C. Auxiliary Algorithm 3 (VCPM Algorithm)

Visible circle path modification (VCPM) algorithm is devel-
oped to replace an LS that cannot observe a certain region with
a CS that can observe the region. VCPM requires either the
CET or CIT algorithm to find replacement CS depending on
the location of the VP and the status of the LS to be replaced
(e.g., left, right, etc.). Fig. 8 shows a scenario where VCPM
algorithm is required. The LS’s and VP’s relative position with
respect to each other can be checked by the BURL algorithm
to compute the replacement CS. Distance of each vertex of
the VP from the LS’s endpoints can be compared as shown in
Fig. 8(b) to find the shortest distance for insertion of visible
circle (VC). Once VC is found, CET/CIT is then employed to
find the replacement CS as shown in Fig. 8(c).

D. Auxiliary Algorithm 4 (LosPoRT 1 Algorithm)

Line of sight partition of regular triangulation (LosPoRT)
1 algorithm is developed to observe an RT that the CP does not
cross. Suppose we are given a CP P(A) surrounding an RT A
as shown in Fig. 9(a). It is the simplest example of LosPoRT
with just one RT enveloped by the CP. Can we observe an
RT A from the CP? The same concept applies to multiple RTs
enveloped by the CP.

The answer is yes if Assumption 4 of Section II holds. The
solution requires partitioning the RT into disjoint SRs such that
each SR has only one adjacent disk as shown in Fig. 10(a) with
vertices pattern described by Fig. 10(b). Fig. 10(a) shows
LosPoRT regions performed by LosPoRT 1. There are three
variants of the LosPoRT algorithms: LosPoRT 1–3. Table VI
shows LosPoRT 1 algorithm. LosPoRT 1 partitions an RT

Fig. 10. LosPoRT and its vertices’ relation. (xiy, yiy) and (xjy, yjy) are
the coordinates of yellow EPs on disks i and j, respectively. (a) LosPoRT.
(b) Points’ geometry. (c) A2’s partition.

TABLE VI
LOSPORT ALGORITHM 1

into three disjoint SRs: A1, A2, and A3. A1 and A3 have four
vertices each and A2 has five vertices. Points B, G, and R are
unique within the RT. Points C and Y are not unique.

For this reason, points C and Y for disks i, j, and k are
denoted as Ci, Yi, Cj, Yj, Ck, and Yk, respectively, if more
than one presented in the same image. The coordinates
for points, B, G, R, Ci, Yi, Cj, Yj, Ck, and Yk are defined
as (xb, yb), (xg, yg), (xr, yr), (xic, yic), (xiy, yiy), (xjc, yjc),
(xjy, yjy), (xkc, ykc), and (xky, yky).

In Table I, B, C, G, R, and Y represent blue, cyan, gray,
red, and yellow, respectively. Fig. 10(c) shows how further
partition of SR A2 would look likes when it is partitioned
by LosPoRT 2 which will be discussed in the next section.
LosPoRT is motivated by the fact that the intersection of two
sets is at most the size of the smaller of the two sets.

Before presenting Lemma 2, let us define a few definitions
that will be needed throughout the rest of this paper. An RT
may also be called RT 7 for example if it is the seventh RT in
the TR. A CP that surrounds an RT A which is formed by disks
i, j, and k may also be referred to as P(A) or P(i, j, k). A CP
that surrounds RTs A and B may be referred to as P(A, B).

A VCS of a region A with endpoints P1 and P2 is denoted
as VCS(A) or VCS(P1, P2). An observer on VCS(A) can
observe all points in region A. Each VCS, if only a segment
of P(A), is an open ended CS because its end points are not
included. This is similar to the concept of open set. When we
refer to a blind curve segment (BCS) we also include both end
points of the CS. For example, a point on the BCS(A) cannot
see A. Now we are ready to present Lemma 2.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

AN et al.: RAINBOW CP PLANNING FOR PATROLLING MOBILE ROBOT WITH CIRCULAR SENSING RANGE 7

Fig. 11. LosPoRT region and its typical CP P(i, j, k). (a) Regions A1, A2, and
A3. (b) LosPoRT region A2.

Fig. 12. Highlight the visibility of A2’s vertices. Using the concept of visible
cone which originates at C, Y, B, R, or G then ends at two points on the CP.
VCS is the CVCS with BCS removed. (a) Inclusion of disk i shows a BCS
with respect to the vertex C only. (b) VCS when all points and all three disks
are considered.

Lemma 2: The subset A2, A2 ⊂ A = ∪3
l=1Al, bounded

by CW CSs, BR, GR, GCj, CS(Cj, Yj), and YjB, as shown
in Fig. 11(a) can be observed from P(i, j, k) with a single
observer if there exists at least one VCS on P(i, j, k) where
an observer can be selected to see all vertices of A2.

Before proving Lemma 2 let us observe one of the LosPoRT
regions, A2, as shown in Fig. 11(b). Any observer on the yel-
low CS and the purple CS can observe the Y vertex. Likewise
any observer on the cyan CS and purple CS can observe the
C vertex. Any observer on the black CS can neither observe
Y nor C vertex. Any observer on the purple CS can observe
Y and C vertex. The purple CS is the candidate visible curve
segment (CVCS) because it is generated by the two vertices
that are on the disk. In fact, any observer point in a region T,
e.g., orange point, bounded by the CVCS, Py2G, and GPc1 can
observe A2 if there is no disk in T. G is the gray point shown
in Fig. 11(b). Fig. 12(a) shows how a CVCS is blocked by
disk i with respect to vertex C. Repeating the same pattern for
all other vertices with disks i and k, the final VCS is shown in
Fig. 12(b) in green color, VCS(Imax, Kmin). Now we are ready
to prove Lemma 2.

Proof: Any region partitioned by the LosPoRT algorithm
has at most five vertices. Since the region is part of an RT
that is formed by three disks, there exist at least three poten-
tially VCSs on P(i, j, k), corresponding to the number of disks,
from which an observer can be chosen that can observe the
whole set of Al where l = 1, 2, and 3. The number of VCSs
can also be directly obtained from drawing a visible cone
from all vertices of subset Al to enclose each of the disks
inside the CP. The rays that originate from each vertex are
tangent to each side of each disk. Any point on the VCS can
observe Al. �

TABLE VII
LOSPORT ALGORITHM 2

Fig. 13. Different scenarios of AE leading to LosPoRT 3 algorithm. (a) RT,
VP, and AE. (b) AE crossing A1 and A2. (c) AE crossing A1, A2, and A3.
(d) CPs crossing A1, A2, or A3.

E. Auxiliary Algorithm 5 (LosPoRT 2 Algorithm)

LosPoRT 2 algorithm in Table VII is developed to observe
an RT that the CP does not cross. It is basically the same as
LosPoRT 1, except that it partitions SRs A1, A2, and A3 of
LosPoRT 1 to obtain smaller SRs while potentially obtaining
larger and more VCSs. LosPoRT 2 creates pattern described
by Fig. 10(c).

If region Ai, i ∈ 1, 2, 3, is partitioned by LosPoRT 2, the
mutually disjoined SRs of Ai maybe notated as M

i A, where
M is an integer representing the user specified number of
partitioning. If M is equal to 2, then Ai = 1

i A ∪2
i A.

F. Auxiliary Algorithm 6 (LosPoRT 3 Algorithm)

LosPoRT 3 algorithm is developed to partition an RT into
three SRs. It is very similar to LosPoRT 1 because all three
SRs are maintaining the same vertices. The differences are
points G and B are moved closer to the disk adjacent to
SR A2. LosPoRT 3 is applied on the crossing RT that can-
not be observed by the VP algorithm or the CSIRT algorithm
as will be seen in steps 5 and 13 of the GreenPath and the
BluePath algorithms, respectively. It is used by the GreenPath
and the BluePath algorithms. Fig. 13 illustrates different com-
binations of RT and CS pairs. Fig. 13(a) shows that AE is
extended from VC 2. AE is crossing RT 4, but does not
cross VP 4. CSIRT algorithm does not work since there is no
VD. The scenario requiring LosPoRT 3 is not limited to just
CP’s CS extending from a VC. More details will be discussed
in Section IV.

If VC 2 moves slightly up so that AE marginally intersects
VP 4, there is no guaranteed that RT 4 remains observable
when the GreenPath undergoes modification by the BluePath
algorithm to remove discontinuity. Fig. 13(b) suggests that
LosPoRT 1 may partition the RT into SRs that can be observed
from AE; however, it is better to have a small A2 because it

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

TABLE VIII
LOSPORT ALGORITHM 3

may be a noncrossing SR of the crossing RT. Fig. 13(c) sug-
gests a better partition of the RT since AE crosses all three
SRs. In addition, AE crosses the VPs of all three SRs shown in
blue, green, and orange. In comparison, AE of Fig. 13(c) does
not cross A1 of Fig. 13(b).

The objective of LosPoRT 3 is to partition a crossing RT
into three SRs with SRs A1 and A3 containing all of colli-
sion free segments of two edges of the RT. Fig. 13(c) shows
that A1 contains all collision free segments of CiYk and A3
contains all collision free segments of CkYj. The black points
in Fig. 13(c) denote the blue and the gray points found by
LosPoRT 1. LosPoRT 3 algorithm is shown in Table VIII.
The algorithm used both VP and VCS concepts to determine
observability. The CP does not have to completely surround
the SR to have a VCS. Provided that the segment of the CP
is in the CVCS of the SR, at least in the local region, and it
is not blocked by any other disks, then there exist a VCS
or a point that can observe A1, A2, or A3. In Fig. 13(c),
|VCS(A1)| = |AE| ≥ |VCS(A3)|. Note that this result is
only for this RT and CP’s CS pair within this RT. Global
result for VCS(A1) and VCS(A3) may not be the same. The
GreenPath’s and the BluePath’s algorithms only consider the
CP’s CS within the RT to maintain computational tractability.
Result of step 13 is found by computing the CVCS of each
LosPoRT 3 SR which is detailed in Section III-C. The SR A2
in Fig. 12(b) can be observed from VCS(Imax, Kmin) which is
a segment of P(i, j, k). Likewise, the result of Lemma 2 can
be used with the RT and CS pair implemented with LosPoRT
3 by considering the CS as a segment of imaginary P(Al),
l ∈ 1, 2, 3, which has no real physical presence other than AE.
Most of the CS of P(Al) is makeup to simulate scenario in

Fig. 14. Seven phases of the rainbow algorithm in rainbow color.

Fig. 11. Fig. 13(d) shows that |VCS(A1)| = |AE| and A2 and
A3 are observable from AE, AE is a segment of P(Al). P(A1)

is the dashed green CP. P(A3) = P(A2) is the dashed blue CP.
P(Al) in Fig. 13(d) is different from P(Al) in Fig. 11(b), but
the result of Lemma 2 still holds because P(Al) is envelop-
ing both vertices Cl and Yl of disk l. The CVCS of disk l
will intersect P(Al) and then create a bounded region T which
ensures observability as discussed in Section III-D with an
orange point observer.

G. Auxiliary Algorithm 7 (Observer Placement Algorithm)

An observer placement (OP) algorithm is developed to man-
age data structures for different type of observer lists such as
VCS observers, CSIRT observers, VCPM observers, and other
observers for the TR. OP algorithm is a subalgorithm for the
VioletPath algorithm. Its details can be found in Table XX.
CSIRT observers and VCPM observers are selected to observe
the TR first due to their in-flexibility. Observers on VCSs, VP
observers and LosPoRT observers, are followed due to their
flexibilities. OP algorithm finds sufficient number of observers
to observe the TR.

IV. RAINBOW COVERAGE PATH

PLANNING ALGORITHM

In this section, we discuss the rainbow algorithms presented
in Table II. The rainbow algorithm is developed to find static
or fixed CP for the robot to follow and also to find observers
needed to sense the entire TR. Observers are constrained to
be on the CP. Avoiding moving obstacles can cause the robot
to deviate from the fixed CP and it will be addressed in
Section V. Fig. 14 illustrates the sequence of phases in the
rainbow algorithm. The rainbow algorithm begins by trans-
forming the TR as an input to get the convex hull of the
interior disks. The final outputs of the transformation are the
static CP and all observers for the TR. The rainbow algorithm
generates a closed CP that is a collection of LS and CS.

Fig. 15(a)–(g) shows the output CPs for all seven phases of
the rainbow algorithm for the sample TR shown in Fig. 1. The
number of vertices, LSs, and CSs increase from the RedPath
to the GreenPath and then remain constant from the GreenPath
onward as shown in Table X. The leftmost column in Table X
indicates the phase of the rainbow algorithm. Common nota-
tions used to compute the rainbow algorithm is tabulated in
Table IX. Fig. 15(a) and (b) do not illustrate the exterior
disks of the TR because they are removed by step 1 of the
RedPath algorithm and they are not needed by the OrangePath
algorithm. The exterior disks of the TR are needed in the
YellowPath algorithm and all other rainbow algorithms.

The polygons in cyan color illustrate in Fig. 15(d)–(f) are
the VPs of the RTs. Fig. 15(h) shows the output CPs for all
seven phases of the rainbow algorithm.

A. Foundation Path, the RedPath

The RedPath algorithm is developed to find a foundational
path. The RedPath for the sample TR is shown in Fig. 16(a).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

AN et al.: RAINBOW CP PLANNING FOR PATROLLING MOBILE ROBOT WITH CIRCULAR SENSING RANGE 9

Fig. 15. CPs from phases 1–7 for the sample TR. (a) RedPath.
(b) OrangePath. (c) YellowPath. (d) GreenPath. (e) BluePath. (f) IndigoPath.
(g) VioletPath. (h) CPs (a)–(g).

All LSs that form the RedPath are described in Fig. 16(b).
The RedPath algorithm is shown in Table XI. RedPath’s third
step implements existing Graham scan algorithm to find the

TABLE IX
SOME NOTATIONS USED IN THE RAINBOW ALGORITHM

TABLE X
NUMBER OF RAINBOW ALGORITHM’S VERTICES, LSS, AND CSS

TABLE XI
REDPATH ALGORITHM

Fig. 16. RedPath. L(i, j, r) or L(Vi, Vj, r) is a red LS connecting points
i and j or points Vi and Vj. The same notation is used for other colors by
replacing r with y for yellow, etc. (a) Convex hull of interior disks’ centers.
(b) RedPath’s LSs.

convex hull. Hull vertices, points 5, 6, 10, 11, 12, and 15, are
points where two LSs of the hull meet.

B. A Coverage Path Enveloping Hull Disks, OrangePath

An OrangePath is developed to find a path that envelopes all
hull disks. To get the OrangePath from the RedPath, relative
relationship of all LSs of the RedPath must be known and they
can be determined by the BURL algorithm. The OrangePath
algorithm, shown in Table XII, establishes the relationship
between any connected RedPath’s vertices, i and j, as L(i, j, r)
with the following algebraic equations:

y(i, j, r) = y(j, i, r) = m(i, j, r)x + b(i, j, r), where

m(i, j, r) = m(j, i, r) = (yi − yj/xi − xj), and

b(i, j, r) = yi − m(i, j, r)xi. (3)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Fig. 17. OrangePath enveloping convex hull’s disks. This figure shows a CS,
CS(Vor6, Vol6), is connecting two LSs. The subscript o, r, and 6 represent
orange color, right, and sixth vertex, respectively. Similarly, the subscript o, l,
and 6 represent orange color, left, and sixth vertex. This representation is used
throughout this paper for other colors in the rainbow algorithm. (a) OrangePath
of the TR. (b) CW directions of LSs/CSs.

TABLE XII
ORANGEPATH ALGORITHM. THE SECOND RAINBOW ALGORITHM

To find the OrangePath, all points that are on the RedPath must
be enlarged by the robot’s radius and the original radius of the
point considered at a minimum to prevent collision with the
disk when the robot moves along the path. Equation (3) and
the BURL algorithm provide a solution to (4) which connects
OrangePath’s vertices, i and j, with L(i, j, o). All OrangePath
LSs are CET to hull disks

y(i, j, o) = m(i, j, o)x + b(i, j, o), where

m(i, j, o) = m(j, i, o) and b(i, j, o) = yi − m(i, j, o)xi. (4)

m(i, j, o) = m(j, i, o) is the slope between two endpoints of
a LS of the OrangePath. Since disks i and j may have differ-
ent radii, slopes m(i, j, r) and m(i, j, o) of (3) and (4) are not
related. Note that the OrangePath also has CSs not just LSs.
Slope of the CS of the OrangePath are simply the derivative
of each of the CS’ equation. Fig. 17(a) shows that any hull’s
disk has two different vertices generating a CS that connects
two different LSs. For example, a hull disk 6, has vertices
Vor6 and Vol6 which form CS(Vor6, Vol6). The OrangePath
may have collision with other interior or exterior disks in the
TR. For example, L(Vol10, Vor6) is colliding with disk 7. An
OrangePath must be processed by the YellowPath algorithm
to advance to the next phase.

C. Collision Free Path, YellowPath

The YellowPath is developed to find a path that envelopes
all interior disks while avoiding collision with all disks in
the TR. If the OrangePath has no collision with any disks
in the TR, then an OrangePath and the YellowPath would
be the same. The YellowPath algorithm only modifies the

Fig. 18. YellowPath. This shows a CIT collision correction. (a) YellowPath
of the TR. (b) CW directions of LSs/CSs.

TABLE XIII
YELLOWPATH ALGORITHM. THE THIRD RAINBOW ALGORITHM

Fig. 19. Transition from the YellowPath to the GreenPath with DT and iden-
tification of RTs that the YellowPath is crossing, crossing RTs. (a) YellowPath
in the partitioned TR. (b) List of crossing RTs.

OrangePath’s CS that have collision with a disk. Fig. 18 illus-
trates how a YellowPath algorithm modifies L(Vol10, Vor6)
of the OrangePath into L(Vyl10, Vyr7), CS(Vyr7, Vyl7), and
L(Vyl7, Vyr6). One collision results in one LS being replaced
by two new LSs and a CS. Each time an LS is detected to
collide with a disk, either CIT or CET collision correction
is required depending on the status of the disk involved in
collision. Because disk 7 is an exterior disk, CIT collision
avoidance is applied to constraint the CP in the TR. An exam-
ple of CET collision correction would occur if interior disk
9 is large enough that it intersects with L(Vyr5, Vyl11). The
YellowPath algorithm is shown in Table XIII.

D. Observable and Collision Free Path, GreenPath

The GreenPath algorithm is developed to modify the
YellowPath as necessary to get a CP that can observe all
crossing RTs of the TR. To know whether an RT is observ-
able by the YellowPath, DT of the TR has to be computed.
Fig. 19 shows the exact partition of the sample TR into 24 RTs
based on DT. The YellowPath crosses RTs 1–6, 8, 10, 11, 13,
16, 17, and 19–24 while envelopes RTs 7, 9, 12, 14, 15, and 18.
RTs enveloped by the YellowPath are known as the noncross-
ing RTs. Fig. 20 shows that RT 5 does not have a VP within
its boundary while RTs 13 and 16 have very tiny VP. For
crossing RTs that have their VPs crossed by the YellowPath,
they are observable from the YellowPath.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

AN et al.: RAINBOW CP PLANNING FOR PATROLLING MOBILE ROBOT WITH CIRCULAR SENSING RANGE 11

Fig. 20. Transition from the YellowPath to the GreenPath with computa-
tion of the VP. The promotion and demotion of YellowPath’s LSs to green
and black helps to determine the GreenPath. (a) All RTs and their VPs.
(b) CSIRT/VCPM RTs.

TABLE XIV
GREENPATH ALGORITHM

An and Qu [1] guaranteed that any observer inside of the
VP of an RT can observe the RT. RTs 2, 5, 13, and 16 either
have no VP or have VP not being crossed by the YellowPath.
Visibility of RTs 5, 13, and 16 are solved with the CSIRT algo-
rithm while visibility of RT 2 is solved by VCPM algorithm. In
summary, visibility of crossing RT is either solved by VP [1],
CSIRT, LosPoRT 3, or VCPM algorithms. The GreenPath for
the sample TR is shown in Fig. 21. The GreenPath in Fig. 21 is
longer than the YellowPath in Fig. 19 due to addition of two
new LSs and a CS around RT 2 so that the new CP inter-
sects VP 2. This is due to VCPM algorithm. The GreenPath
algorithm is shown in Table XIV.

E. Differentiable, Observable, and Collision
Free Path, BluePath

The BluePath is developed to modify the GreenPath as nec-
essary to get a first order differentiable CP while maintaining
observability of all crossing RTs. It is obvious from an
OrangePath, a YellowPath, and a GreenPath that discontinu-
ity exists in the CP. The discontinuity problem is treated in
this section. The BluePath checks, and if necessary modifies,
the CS to ensure differentiability. Differentiability correction
occurs when Sgi = (Ri+Rr)θi = Rgiθi is smaller than the
user’s specified threshold value (see Fig. 22). The BluePath

Fig. 21. GreenPath which can observe all crossing RTs. (a) GreenPath of
the sample TR. (b) GreenPath’s CSs.

Fig. 22. Illustrating the enlargement of disk 11 to prevent discontinuity.

algorithm repairs differentiability problems by enlarging Rgi
by the user specified value while keeping θi constant. θi is the
central angle or the angle subtended at the center of a circle
of radius Rgi. Every CS in a closed path is connected with
two LSs. For example CS(Vgl11, Vgr11) or Sg11 is connected
with LSs L(Vgr5, Vgl11) and L(Vgr11, Vgl15). In addition, Sg11
is a segment or arc of the enlarged disk 11. These descriptions
are important in the BluePath algorithm.

Tables IX and X defined Ngcs = Nh + Ncol + NVCPM.
Ngcs determines the running time of the BluePath algorithm.
Fig. 22 shows an example of Ngcs = 8. The BluePath algorithm
in Table XV determines that only Sg11 has differentiability
problem. Once Sg11 is repaired, neighboring CSs Sg5 and Sg15
may be affected since they share L(Vgr5, Vgl11) and L(Vgr11,
Vgl15), respectively. A state ST is required to generate the
BluePath. ST(i) is true if Sgi is first order differentiable.
Otherwise it is false. If Sgi is modified to obtain differentiabil-
ity, then the two neighboring CSs, Sg(i−1) and Sg(i+1) needed
to be checked and modified if necessary. In CW direction, if
Sgi is Sg11, then Sg(i−1) and Sg(i+1) correspond to Sg5 and Sg15,
respectively. The example problem shown in Fig. 22 is a CET
correction. If the discontinuity were to occur on disk 7, then
a CIT correction would be required. The BluePath algorithm
is shown in Table XV.

The output of the BluePath algorithm is a CP that is colli-
sion free, differentiable, and can observe all crossing RTs. The
BluePath algorithm fails when Assumption 4 does not hold.
The BluePath is input into the IndigoPath algorithm to obtain
observability of noncrossing RTs. The noncrossing SR(s) of
crossing RT(s) found by LosPoRT 3 may be inputted into

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

TABLE XV
BLUEPATH ALGORITHM. THE FIFTH RAINBOW ALGORITHM

TABLE XVI
SRS AND THEIR VCS(S) AS SHOWN IN FIG. 23

the IndigoPath algorithm to recompute VCS as larger VCS or
more VCSs may exist. LosPoRT 3 and CSIRT algorithms are
similar to each other and may complement each other. CSIRT
algorithm remains useful, especially for RT 5’ SR A2. Since
the CP is very close to disk 6, there is no VCS to observe A2.
When the robot’s radius is much smaller, the CP is enveloping
interior disks tighter than displayed in Fig. 21.

F. Differentiable, Observable, and Collision Free Path for
the TR, IndigoPath

The IndigoPath is developed to find VCSs on the BluePath
that can observe all noncrossing RTs and noncrossing SRs. It
is implemented with LosPoRT 1–3. Fig. 9 illustrated a CP
enveloping just one RT. Although the BluePath envelopes
multiple RTs, the same concept of Section III-D is applied.

LosPoRT 1 finds SRs of an RT such that only one adjacent
disk is in an SR. The SR is then used to find VCS(s) on
the CP. LosPoRT 2 is not needed to solve the example

Fig. 23. LosPoRT of selected RTs and the VCSs it generated. The colored
points on the IndigoPath are the endpoints of VCSs and they are considered
in CW order. The VCSs displayed are only for RTs that the IndigoPath does
not intersect. LosPoRT 3 is not used for the sample TR.

TABLE XVII
INDIGOPATH ALGORITHM. THE SIXTH RAINBOW ALGORITHM

Fig. 24. VL test on the CP to find the intersection of VLs and VCSs.

problem. Fig. 23 and Table XVI show two VCSs where
a point can be selected to observe SR 7A1: 1) CS(57,67) and
2) CS(71,73). The exact location of the observer on the VCS
to observe a region is determined by the VioletPath algorithm.
Table XVII shows an IndigoPath algorithm. For the sample
TR, LosPoRT 3 never utilized.

G. Differentiable, Observable, and Collision Free Path for
the TR With Observers, VioletPath

A VioletPath algorithm is developed to find a sufficient
number of observers on the BluePath to observe the TR. This
objective is achieved by finding a MER that enveloped all
vertices of the BluePath. The dimension of the MER is
then used to find equally spaced VLs as shown in Fig. 24.
The number of VL required may be designed according to
system requirement. The height of VL may be adjusted to
exceed the height of the TR. The goal is to have sufficient
number of VL such that most VCS intersect at least one
VL. An intersection point of a VL and a VCS is a candidate
observer point. Analogously, a HLT may also be employed

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

AN et al.: RAINBOW CP PLANNING FOR PATROLLING MOBILE ROBOT WITH CIRCULAR SENSING RANGE 13

TABLE XVIII
INTERSECTION OF SELECTED VLT AND VCSS

TABLE XIX
VIOLETPATH ALGORITHM. THE LAST RAINBOW ALGORITHM

with a VL to generate a grid for intersection point compu-
tation. Fig. 24 shows VCSs and VLs intersection with some
results tabulated in Table XVIII. The MER is divided vertically
with (2N+1) number of VLs where N represents the number
of disks in the TR. The interpretation of Table XVIII’s col-
umn 2 is that VL1 is intersecting five VCSs which included
the VCS generated by the VP of RT 1.

Results of OP algorithm are shown in Table XXII and
Fig. 25. Notice that VL10 (VL10 underlined in column 6) does
not intersect any VCS. This means that the point where VL10
intersects the BluePath is not a useful observer point.

Table XIX shows the VioletPath algorithm. Step 7 of the
algorithm call OP algorithm to find observers for the TR. With
the four assumptions in Section II, we summarize the results
in Sections III and IV in Theorem 2.

Theorem 2: If the four assumptions in Section II hold, the
rainbow CP planning algorithms will generate a CP with the
following properties.

1) Collision-free in the presence of known disks.
2) First order differentiable.
3) Complete coverage of the TR.
Proof: In Section IV-A, we show that the RedPath is a con-

vex hull of the interior points which are actually the center of
the interior disks. The RedPath is a foundational path where
the rest of the paths are improved upon. From the RedPath,
we applied the BURL algorithm and algebraic manipula-
tion to find the OrangePath. The OrangePath may or may
not be collision-free and it is not completely visible. It is
a foundational path where the YellowPath is derived from to
find a collision free path. The YellowPath is collision free
with all interior and exterior disks. From the YellowPath, the

TABLE XX
OP ALGORITHM

TABLE XXI
STATIC WORKSPACE CONFIGURATION IN ASSUMPTION 4 [1]

TABLE XXII
ALL OPS AND THEIR COVERAGE REGIONS (RG)

GreenPath is derived. The GreenPath inherits the collision free
property from the YellowPath. In addition, the GreenPath is
able to observe all RTs that intersect with the GreenPath. The
GreenPath obtained visibility of all the RTs that it crosses
through VP, CSIRT, LosPoRT 3, and VCPM algorithms. The
GreenPath is then inputted to the BluePath algorithm to repair
any differentiability problem. As a result, the BluePath is
first order differentiable. The BluePath is then inputted to
the IndigoPath algorithm which partitions the remaining RTs
to which observability has not been verified. In addition the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Fig. 25. Final rainbow CP with all observers.

IndigoPath algorithm computes the VCSs of the noncross-
ing RTs and noncrossing SRs. Finally the VioletPath inherits
the collision free CP that is first order differentiable and has
complete coverage of the TR after VLT algorithm computes
the sufficient number of observers from the VCSs, VCPM
observer, and CSIRT observers.

V. SIMULATION

The sample TR in Fig. 1 is tabulated in Table XXI.
Table XXII illustrates the observers selected to observe the
entire TR based on the rainbow algorithm. The order of
the observers in the table is based on the OP algorithm in
Table XX.

In Table XXII, Vd11L and Vd11R represent the observer to
the left and to the right of VD 11, respectively. Vd10 repre-
sents the observers to RT 13. Vs2, VL8, S1, and S2 represent
the observer at the VC 2, on the intersection of VL 8 with
the BluePath, and on the intersection of special VL and the
BluePath, respectively. Vd11L and Vd11R can observe regions
12A1 and 15A1 separately, but both must jointly observe
RT 16. RTs 6 and 13 take two observers each to be observed.
Note the underline observers VL28, VL32, VL33, and VL34
in Table XXII, the underlined simply means that the observer
is on the lower CS of the CP. Observers represented by S1
and S2 simply mean that they are found by step 6 of the
OP algorithm. The entry highlights in yellow represent the
region already covered by preceding observer(s). The entry
highlights in green means it takes two observers to observe
one RT. Equivalently, the observers and their corresponding
regions of coverage are shown in Fig. 25.

We simulate the data in Table XXI with CGAL [16] to
obtain all the figures and results illustrated in this paper. All
CSIRT observers are shown in blue with the word “VD”
printed. Of particular interest is that RT 8 and RT 13 take
two observers to be observed. In Fig. 25, they appear to be
only 1 in RT 13, but they are two observers that are very
close to each other. Some positive attributes of the rainbow
algorithm include complete coverage through exact partition,
collision free and first order differentiable CP. Some disadvan-
tages of the rainbow algorithm include the VCPM algorithm
which may produce a CS that is longer than necessary. CSIRT
algorithm, which computes three observers on the CS within
the RT, limit an ability to minimize the number of observers
necessary to observe the entire TR.

A. Model of Differential Robot

A differential robot introduced in Section II is shown in
Table XXIII with world coordinates represented by x and

TABLE XXIII
MOTION REPRESENTATION FOR THIRD ORDER SYSTEM

TABLE XXIV
COORDINATE AND INPUT TRANSFORMATION

y. Robot’s chained form coordinates are represented by z1,
z2, and z3.

This sample model of the nonholonomic robot is included
to show how useful the CP of the rainbow algorithm in the
overall system performance. Based on the results of [15], our
patrolling algorithm is as follows.

1) Select coordinates (x, y) and orientation of the robot such
that θ
= (π/2), apply state and input transformations as
shown in Table XXIV and determine the corresponding
boundary conditions z0 = [z0

1, z0
2, z0

3], zf = [zf
1, zf

2, zf
3]

to obtain the chained form motion or dynamic.
2) Let Tj be the time for the mobile robot to complete its

maneuver between the adjacent pair of points and Tj
s be

the sampling period such that k = (Tj/Tj
s) is an integer.

The center of the moving disks Oi moving at constant
velocities vk

i � [vk
i,xvk

i,y] for t ∈ [tj0 +kTj
s, tj0 + (k +1)Tj

s]
are located at (xk

i , yk
i) during the time when t = t0 +

kTs. For time k = 0, . . . , k − 1, recursively determine
constants ak

4 from the following equations:

min
t∈[t∗i ,t∗i]

g2(z1(t), k)
(

ak
4

)2 + g1,i(z1(t), k, τ)ak
4

+ g0,i(z1(t), k, τ) ≥ 0 (5)

τ = t − t0 − kTs (6)

g2(z1(t), k) =
[
(z1(t))

4 − f (z1(t))
(

Bk
)−1

Ak
]2

(7)

g1,i(z1(t), k, τ) = 2

[
(z1(t))

4 − f (z1(t))
(

Bk
)−1

Ak
]

[
f (z1(t))

(
Bk

)−1
Yk − yk

i − vk
i,yτ

]
(8)

g0,i(z1(t), k, τ) =
[

f (z1(t))
(

Bk
)−1

Yk − yk
i − vk

i,yτ

]2

+
(

z1(t) − xk
i − vk

i,xτ
)2 − (Ri + Rr)

2

(9)

Bk =

⎡

⎢⎢⎢⎢⎢⎣

1 zk
1

0 1

(
zk

1

)2 (
zk

1

)3

2zk
1 3

(
zk

1

)2

1 zf
1

0 1

(
zf

1

)2 (
zf

1

)3

2zf
1 3

(
zf

1

)2

⎤

⎥⎥⎥⎥⎥⎦
(10)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

AN et al.: RAINBOW CP PLANNING FOR PATROLLING MOBILE ROBOT WITH CIRCULAR SENSING RANGE 15

Fig. 26. Triangular-based CPs. Rainbow CP is the shortest of all three CPs.
(a) Triangular-based CPs. (b) Triangular-based CPs and their performance
when = 500.

Yk =

⎡

⎢⎢⎣

zk
3

zk
2

zf
3

zf
2

⎤

⎥⎥⎦, Ak =

⎡

⎢⎢⎢⎢⎢⎣

zk
1

4

4
(
zk

1

)3

zf
1

4

4
(

zf
1

)3

⎤

⎥⎥⎥⎥⎥⎦

f (z1) = [
1 z1 z2

1 z3
1

]
. (11)

3) A feasible and collision-free path in the transformed
state can be parameterized in polynomial/matrix form as

z3(z1) = F(z1) = akf (z1), where (12)

ak =
[
ak

0, ak
1, ak

2, ak
3, ak

4

]
(13)

f (z1) =
[
1, z1(t), (z1(t))

2, (z1(t))
3, (z1(t))

4
]T

(14)
[
ak

]T =
(

Bk
)−1(

Yk − Akak
4

)
. (15)

4) The steering inputs to achieve path (12) which is a subset
of s(t) in (2) are determined to be

v1(t) = C = zf
1 − z0

1

T

v2(t) =
(

2ak
2 + 6ak

3zk
1 + 12ak

4

(
zk

1

)2
)

C

+
(

6ak
3 + 24ak

4zk
1

)
(t − t0 − kTs)C

2

+ 12ak
4(t − t0 − kTs)

2C3.

B. Path Comparison

Three CP planning based on exact partition algorithms are
compared in Fig. 26. The red CP is generated by the CWCP
algorithm [1]. It requires 26 observers and has a length of
3216 m. The blue CP is generated by previous next way-
point coverage constraint (PNWCC) algorithm [2]. It requires
12 observers and has a length of 2390 m. The green CP is
generated by the rainbow algorithm. It requires 20 observers
and has a length of 2001 m. Our rainbow algorithm reduces

TABLE XXV
RECENT COVERAGE TECHNIQUES

the CP length as well as the number of turns when compared
to CWCP and PNWCC algorithms as illustrated in Fig. 26.
The number of turns in the CP is proportional to the number
of CSs. They are shown in Fig. 26(a).

C. Performance Comparison

LosPoRT algorithms allow noncrossing RTs or SRs to be
observed from a CP. Overlapping VCSs allow efficient OP
along the CP. For example, one of the observers is placed at the
intersection of the VL28 with the VioletPath because of eight
intersections (see row 15 of Table XXII). In Section IV, we
showed that our rainbow algorithm applied several well-known
algorithms such as the Graham scan, DT, and line intersection.
All mentioned algorithms can find our solution in Nlog(N)

time.
Table XXV shows techniques and results of recent papers

that achieved complete coverage in unknown TR. Lee et al. [5]
considered circular and polygonal obstacles and its result-
ing path is smooth with few sharp turns. Oh et al. [6] and
Luo et al. [7] considered polygonal obstacles and obtained
zigzag CPs which are neither energy efficient nor time
efficient.

Yazici et al. [12] considered rectangular obstacles and
obtained zigzag CP. Although our obstacles are assumed cir-
cular, they can be relaxed to that of ellipsoid without affecting
our rainbow algorithm provided that our CSIRT and LosPoRT
algorithms generate coverage observers. In the case of polyg-
onal obstacle, it can be enveloped by an ellipsoid which
means that a differentiable CP may be kept, however, the vis-
ibility analysis has to be modified based on the art gallery
theorem [17] or level set technique. Since our RedPath is
a convex hull, our rainbow algorithm can be generalized to
higher dimensions. In summary, our CP planning technique
is better than the techniques listed in Table XXV because it
provides complete coverage, smooth, short, segmentable, and
curvature control CP, choice of OP, and fast running time as
shown in Table XXVI.

D. Running Time and Convergence

A number of data structures are required to compute the
running time in terms of big O notation. Most of the data struc-
tures are used in multiple phases of the rainbow algorithm. For
example, the LineSegment class is used in all seven phases
of the rainbow algorithm ranging from the RedPath to the
VioletPath. Some member variables and function members

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

16 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

TABLE XXVI
RUN TIME OF THE RAINBOW ALGORITHM

are only used in some phases. For example a member func-
tion (MF) AddLineSegment() is only used in the YellowPath
and the GreenPath. A MF ModifiedLineSegment() is used
in an OrangePath, the YellowPath, the GreenPath, and the
BluePath. Rainbow algorithm requires many other classes such
as RT, VP, and SR to name a few.

Table XXVI shows how much time it takes to compute the
most intensive activities in each of the color phase of the rain-
bow algorithm. The leftmost column represents by {1, 2, 3,
4, 5, 6, 7} are for the phase of the rainbow algorithm, respec-
tively. Most activities are not converged as the number of
input N approach infinity which implies that M also approach
infinity. The slowest activity is in checking the intersection
of the yellow path line segment with the RT and the VP of
the GreenPath algorithm. Depending on how much modifica-
tion is done in the BluePath algorithm, a complete repeating
of the all activities in the GreenPath can be assumed as the
upper bound running time for the BluePath. Running time in
Table XXVI is not affected with this assumption.

A nested for loops was implemented which result in
quadratic runtime. Table VI shows that the rainbow algo-
rithm can compute the CP and observers for the TR with
quadratic runtime. Locally, all of our algorithms do converge
in at most three iterations where we compute the CET or CIT
LS to correct collision, visibility, and first order differentiable
problems. A simple algebraic manipulation and the BURL
algorithm return the correct result of OPLS from the RPLS
in one iteration.

VI. CONCLUSION

Our rainbow algorithm results in a complete and first order
differentiable CP with static disks avoidance which means
it can be implemented with time and energy efficiency. The
dynamic obstacle avoidance technique can be incorporated as
shown in Section V. Control points can be selected along

the CSs that form the VioletPath. If dynamic obstacles are
encountered, the dynamic obstacle avoidance algorithm can
be executed by using two known points in world coordi-
nate which are then transformed into chained coordinate and
finally applied motion planning algorithm to avoid the obsta-
cles. Once obstacle avoidance is performed, the robot can
switch back to the static CP that has been planned. More
specifically for our example problem, if a dynamic obstacle
is blocking the robot from reaching an intended observation
point VL15 on Fig. 25 as an example. As the robot moves
from points VL8–VL15, the robot may not get to VL15 due
to a moving obstacle. Depending on the criticality of the mis-
sion, the robot can slow down or avoid the moving obstacle
at the cost of not getting to VL15. But the robot knows that
VL15 observes a few regions, 7A2, RT6, 7A3, 9A1, and 9A3,
as seen in Table XXII. By not getting to VL15, the robot
can still search its databases to query which other observer
points can help make up for the loss of visibility. For exam-
ple observer Vd7L can cover regions 7A3 and 9A1, observer
Vs2 can cover 9A3, and observer Vd6 can cover RT6. The
concern for the robot at this point is to generate a new sub-
path that has observer that can observe region 7A2. We know
that this is doable with the rainbow algorithm. Qu et al. [15]
detailed how dynamic obstacle avoidance works and based on
that work, we generate the dynamic part of the algorithm seen
in Section V-A. In the case where complete coverage is not
required, if other important parameters are also considered,
a utility function can be imposed to weight and implement
the decision. Integration under the curve can quickly find
the area which consideration can be taken to cover a cer-
tain region of the TR or not based on the cost imposed on
the distance of the path travel or the cost of computation on
the sensor. A CP generated by our technique is shorter than
a CP obtained in [1], [2], and [12] due to the foundation path
obtained through the Graham scan algorithm and interior disks.
Optimality condition in term of CP length may be obtained in
its current form if there is no condition for VCPM. However,
difficulty remains if both optimal conditions for path length
and sensor placements are desired. Our approach can also be
modified to adapt to unknown environments by applying the
seven templates-based approach implemented in [6] and ini-
tial navigation through the known boundary of the TR. Last,
but not least, the CP generated by the rainbow algorithm is
very easy for the robot to follow because most of the seg-
ments of the CP are made of LSs and there are very few turns
dictated by CSs. Recent advances in control of nonlineari-
ties systems [25]–[28] make our contribution of the rainbow
algorithm very promising in future works of path planning,
surveillance, and other electronic applications.

ACKNOWLEDGMENT

The authors would like to thank all the anonymous review-
ers and the editors at SMC for meaningful comments.

REFERENCES

[1] V. An and Z. Qu, “Triangulation-based path planning for patrolling by
a mobile robot,” in Proc. Aust. Control Conf., Perth, WA, Australia,
2013, pp. 183–188.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

AN et al.: RAINBOW CP PLANNING FOR PATROLLING MOBILE ROBOT WITH CIRCULAR SENSING RANGE 17

[2] V. An and Z. Qu, “A practical approach to coverage control for multiple
mobile robots with a circular sensing range,” in Proc. Robot. Sensors
Environ., Washington, DC, USA, 2013, pp. 112–117.

[3] H. Choset and P. Pignon, “Coverage path planning: The boustrophedon
cellular decomposition,” in Field and Service Robotics. London, U.K.:
Springer, 1998, pp. 203–209.

[4] H. Choset, “Coverage for robotics—A survey of recent results,” Ann.
Math. Artif. Intell., vol. 31, nos. 1–4, pp. 113–126, 2001.

[5] T.-K. Lee, S.-H. Baek, S.-Y. Oh, and Y.-H. Choi, “Smooth coverage
path planning and control of mobile robots based on high-resolution grid
map representation,” Robot. Auton. Syst., vol. 59, no. 10, pp. 801–812,
2011.

[6] J. S. Oh, Y.-H. Choi, J. B. Park, and Y. F. Zheng, “Complete coverage
navigation of cleaning robots using triangular-cell-based map,” IEEE
Trans. Ind. Electron., vol. 51, no. 3, pp. 718–726, Jun. 2004.

[7] C. Luo, S. X. Yang, D. A. Stacey, and J. C. Jofriet, “A solution to
vicinity problem of obstacles in complete coverage path planning,” in
Proc. IEEE Int. Conf. Robot. Autom., vol. 1. Washington, DC, USA,
2002, pp. 612–617.

[8] C.-H. Kuo, H.-C. Chou, and S.-Y. Tasi, “Pneumatic sensor: A com-
plete coverage improvement approach for robotic cleaners,” IEEE Trans.
Instrum. Meas., vol. 60, no. 4, pp. 1237–1256, Apr. 2011.

[9] S. X. Yang and C. Luo, “A neural network approach to complete cover-
age path planning,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 34,
no. 1, pp. 718–724, Feb. 2004.

[10] C. Yang and K.-W. Chin, “Novel algorithms for complete targets cov-
erage in energy harvesting wireless sensor networks,” IEEE Commun.
Lett., vol. 18, no. 1, pp. 118–121, Jan. 2014.

[11] J. H. Lee, J. S. Choi, B. H. Lee, and K. W. Lee, “Complete coverage
path planning for cleaning task using multiple robots,” in Proc. Int. Conf.
Syst. Man Cybern., San Antonio, TX, USA, 2009, pp. 3618–3622.

[12] A. Yazici, G. Kirlik, O. Parlaktuna, and A. Sipahioglu, “A dynamic path
planning approach for multirobot sensor-based coverage considering
energy constraints,” IEEE Trans. Cybern., vol. 44, no. 3, pp. 305–314,
Mar. 2014.

[13] W. Meiting, T. S. D. Junjian, and Y. Liwen, “Complete coverage path
planning of wall-cleaning robot using visual sensor,” in Proc. Int. Conf.
Electron. Meas. Instrum., Xi’an, China, 2007, pp. 4-159–4-164.

[14] L. Paull, C. Thibault, A. Nagaty, M. Seto, and H. Li, “Sensor-driven
area coverage for an autonomous fixed-wing unmanned aerial vehicle,”
IEEE Trans. Cybern., vol. 44, no. 9, pp. 1605–1618, Sep. 2014.

[15] Z. Qu, J. Wang, and C. E. Plaisted, “A new analytical solution to mobile
robot trajectory generation in the presence of moving obstacles,” IEEE
Trans. Robot., vol. 20, no. 6, pp. 978–993, Dec. 2004.

[16] A. Fabri, P. Alliez, and E. Fogel, “Computational geometry algorithms
library,” Personal Comm, 2004.

[17] J. O’Rourke, Art Gallery Theorems and Algorithms, vol. 57. New York,
NY, USA: Oxford Univ. Press, 1987, pp. 1–29.

[18] J. Yang, Z. Qu, J. Wang, and K. Conrad, “Comparison of opti-
mal solutions to real-time path planning for a mobile vehicle,”
IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 40, no. 4,
pp. 721–731, Jul. 2010.

[19] Y. Guo and Z. Qu, “Coverage control for a mobile robot patrolling
a dynamic and uncertain environment,” in Proc. 5th World Congr.
Intell. Control Autom. (WCICA), vol. 6. Hangzhou, China, 2004,
pp. 4899–4903.

[20] J. O’Rourke, “Finding minimal enclosing boxes,” Int. J. Comput. Inf.
Sci., vol. 14, no. 3, pp. 183–199, 1985.

[21] D. A. Ross, Master Math: Geometry. Boston, MA, USA: Delmar Learn.,
2004.

[22] K.-T. Leung and S. N. Suen. Vectors, Matrices and Geometry. vol. 1.
Hong Kong: Hong Kong Univ. Press, 1994.

[23] R. L. Graham, “An efficient algorith for determining the convex hull of
a finite planar set,” Inf. Process. Lett., vol. 1, no. 4, pp. 132–133, 1972.

[24] M. de Berg et al., “Line segment intersection,” in Computational
Geometry. Berlin, Germany: Springer, 1997, pp. 19–43.

[25] C. Chen, Z. Liu, Y. Zhang, C. L. P. Chen, and S. Xie,
“Saturated Nussbaum function based approach for robotic systems with
unknown actuator dynamics,” IEEE Trans. Cybern., vol. 46, no. 10,
pp. 2311–2322, Oct. 2016.

[26] C. Chen, Z. Liu, Y. Zhang, and C. L. P. Chen, “Modeling and
adaptive compensation of unknown multiple frequency vibrations
for the stabilization and control of an active isolation system,”
IEEE Trans. Control Syst. Technol., vol. 24, no. 3, pp. 900–911,
May 2016.

[27] G. Lai, Z. Liu, Y. Zhang, C. L. P. Chen, and S. Xie, “Asymmetric actu-
ator backlash compensation in quantized adaptive control of uncertain
networked nonlinear systems,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 28, no. 2, pp. 294–307, Feb. 2017.

[28] G. Lai, Z. Liu, Y. Zhang, and C. L. P. Chen, “Adaptive fuzzy track-
ing control of nonlinear systems with asymmetric actuator backlash
based on a new smooth inverse,” IEEE Trans. Cybern., vol. 46, no. 6,
pp. 1250–1262, Jun. 2016.

[29] M. T. Goodrich, R. Tamassia, and D. Mount, Data Structures and
Algorithms in C++, 2nd ed. Danvers, MA, USA: Wiley, 2009,
pp. 594–654.

[30] J. Thomas, A. Blair, and N. Barnes, “Towards an efficient optimal trajec-
tory planner for multiple mobile robots,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., vol. 3. Las Vegas, NV, USA, 2003, pp. 2291–2296.

Vatana An (M’13) received the master’s degree in
electrical engineering from the University of Central
Florida, Orlando, FL, USA, in 2005, where he is pur-
suing the Ph.D. degree.

He is with the U.S. Navy, Panama City, FL,
USA. His current research interests include net-
worked systems, cooperative controls, robotics, and
autonomous vehicle systems.

Mr. An was featured in High Tech magazine in
2012 for his contribution to the U.S. Navy.

Zhihua Qu (M’90–SM’93–F’10) received the
Ph.D. degree in electrical engineering from the
Georgia Institute of Technology, Atlanta, GA, USA,
in 1990.

Since then he has been with the University of
Central Florida, Orlando, FL, USA, where he is
currently a Pegasus Professor and the Chair of the
Department of Electrical and Computer Engineering.
His current research interests include nonlinear
systems and control. He has published a number of
papers in the above areas and authored three books

entitled Robust Control of Nonlinear Uncertain Systems (Wiley Interscience,
1998), Robust Tracking Control of Robotic Manipulators (IEEE Press, 1996),
and Cooperative Control of Dynamical System (Springer-Verlag, 2009).

Dr. Qu is currently an Associate Editor of Automatica and the International
Journal of Robotics and Automation.

Rodney Roberts (M’91–SM’02) received the
Ph.D. degree in electrical engineering from Purdue
University, West Lafayette, IN, USA, in 1992.

He has been with Florida A&M University—
Florida State University College of Engineering,
Tallahassee, FL, USA, since 1994, where he is cur-
rently a Professor. His research interests include
robotics and image processing.

